FIRST QUARTERLY TEST AUGUST 2024

SUBJECT: BASIC MATHEMATICS (75) MUO Max. Marks: 40

TIME: 1 Hr. 30 Mins.

PART-A

I Answer ALL the questions: 5x1=5

1) If
$$A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$
 then $5A' =$

a)
$$\begin{bmatrix} 5 & 15 \\ -10 & 20 \end{bmatrix}$$
 b) $\begin{bmatrix} 5 & -10 \\ 15 & 20 \end{bmatrix}$ c) $\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$

b)
$$\begin{bmatrix} 5 & -10 \\ 15 & 20 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$

d)
$$\begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$$

2) The adjoint of the matrix
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is

a)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

b)
$$\begin{bmatrix} a & -b \\ c & d \end{bmatrix}$$

a)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 b) $\begin{bmatrix} a & -b \\ c & d \end{bmatrix}$ c) $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ d) $\begin{bmatrix} d & b \\ -c & a \end{bmatrix}$

$$d) \begin{bmatrix} d & b \\ -c & a \end{bmatrix}$$

The mean proportional of 2 and 8 is
a) 32
b) 4
c) 8
d) 2
size
$$\sqrt{8} = \sqrt{8} = \sqrt$$

d)
$$e^{-3}$$

For question number 6 to 10 choose appropriate answers from the given answers below: II

$$\left[1, \frac{2}{3}, 12, \frac{1}{3}, 5, 13\right]$$

$$\begin{bmatrix} 1, \frac{1}{3}, 12, \frac{1}{3}, 3, 13 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 5 & 6 & 3x + 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 5 \\ 1 & 6 \\ 4 & 3 \end{bmatrix}. \text{ If } A = B' \text{ then the value of } x \text{ is } \underline{\qquad}.$$

7) The value of x if
$$\begin{vmatrix} 3 & x \\ 2 & 8 \end{vmatrix} = -2$$
 is $\frac{1-8x-y-x}{2}$ into partial fractions. (12) Resolve $(x+1)(x+2)(x+3)$ into partial fractions.

9)
$$\lim_{x \to 2} \left[\frac{x^3 - 8}{x - 2} \right] = \frac{1}{1 + 2}$$

Find the total labour cost at
$$\approx 20$$
 per hour to produce total of 120 $= \lim_{x \to 1} \left(\frac{ax^2 + bx + c}{cx^2 + bx + a} \right) = \lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a} = \frac{ax^2 + bx + c}{ax^2 + bx + a} = \frac{ax^2$

FIRST QUARTE 8-TRA9 STAUGUST 2024

III Answer any FOUR questions: Maintain Direct Toolland

- 11) If $A = \begin{bmatrix} 3 & -2 & 5 \end{bmatrix}$. Find AA'.
- Find x if the matrix $\begin{bmatrix} 3 & 2 & x \\ 4 & 1 & -1 \\ 0 & 3 & 4 \end{bmatrix}$ is singular.
- What must be added to each term in the ratio 2:3, so that it becomes 5:6?
- If a : b = 2 : 3, b : c = 3 : 5, c : d = 5 : 7. Find a : d.
- Evaluate : $\lim_{x \to 3} \left(\frac{x^2 4x + 3}{x^2 2x 3} \right)$.
- 16) Evaluate: $\lim_{x \to 0} \frac{\sin 4x}{\sin 2x}$.

Answer any FOUR questions:

- 17) If $A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$. Prove that $A^2 4A 5I = 0$ where I is unit matrix and 0 is the null matrix of order
- 18) Solve by Cramer's rule 3x + 2y = 8, 4x-3y = 5.
- Monthly income of A and B are in the ratio 2:3 and their expenditure are in the ratio 3:5. If each save ₹ 100 per month. Find the monthly incomes of A and B.
- 20) If ₹ 150 maintain a family of 4 persons for 30 days. How long ₹ 600 maintain a family of For question number 6 to 10 choose appropriate answers from the given?
- 21) Evaluate $\lim_{x \to \infty} \left| \frac{3x^2 4x + 5}{2x^2 + 5x 1} \right|$.
- $\left[1, \frac{2}{7}, 12, \frac{1}{3}, 5, 13\right]$ 22) Find 'k' for which $f(x) = \begin{cases} k+x, & x=1\\ 4x+3, & x \neq 1 \end{cases}$ is continuous at k=1

Answer any TWO questions:

- 23) Solve the following equations using matrix method:
- $x+y-z=1, \quad 3x+y-2z=3, \quad x-y-z=-1$ 24) Resolve $\frac{x^2}{(x+1)(x+2)(x+3)}$ into partial fractions.
- Resolve $\frac{2x+5}{(x+2)(x-1)^2}$ into partial fractions.
- ABC company requires 1000 hours to produce the first 30 engines. If the learning effect is 90%, Find the total labour cost at ₹ 20 per hour to produce total of 120 engines
- 27) Evaluate $\lim_{x\to 2} \left| \frac{x^2 4}{\sqrt{x + 2} \sqrt{3x 2}} \right|$.