FIRST QUARTERLY TEST AUGUST 2024

SUBJECT: MATHEMATICS (35) Max. Marks: 40 CLASS: II PUC TIME: 1 Hr. 30 Mins. PART - A Ι Answer All the Multiple Choice Questions: Let R be the relation in the set N given by $R = \{(a, b) : a = b-2, b > 6\}$ choose the 1) correct answer. A) $(2, 4) \in \mathbb{R}$ B) $(3, 8) \in \mathbb{R}$ C) $(6, 8) \in \mathbb{R}$ D) $(8, 7) \in \mathbb{R}$ In a relation R on the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ is 2) A) Reflexive B) Symmetric C) Transitive D) Equivalence relation If $f: R \rightarrow R$ be given by f(x) = 3x then f is B) many-one and onto. A) one-one and onto. C) one-one but not onto. D) neither one-one nor onto. The number of all possible matrices of order 3×3 with each entry 0 or 1 is 4) B) 8 C) 81 $\tan^{-1}\left(\sqrt{3}\right) - \sec^{-1}\left(-2\right)$ is equal to B) $-\pi/3$ E + xb = (xC) $\pi/3$ milest action D) $2\pi/3$ (-12) to 1 (15) 6) If $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$ then the value of x is B) 4 $^{1}AB = ^{1}(BA)C)8$ $^{1}BO = ^{1}D) \pm 2\sqrt{2}$ The derivative of $\sin (ax + b)$ with respect to x is 7) A) $\cos (ax + b)$ B) a $\sin(ax + b)$ c) a cos (ax + b) D) $-\cos(ax + b)$ II Answer the following questions by choosing the correct answers in the brackets:3x1=3 24) If $y = (\tan^{-1} x)^{\frac{1}{2}}$ show that $(1+x^{\frac{1}{2}})^{\frac{1}{2}} \frac{d^{\frac{1}{2}}y}{dx^{\frac{1}{2}}} + 2x(1+x^{\frac{1}{2}}) \frac{dy}{dx} = 2$. 10) If $x - y = \pi$ then $\frac{dy}{dx} = \frac{dy}{dx} = 0$, no to winter one only of the C reproductive manner of the contraction of Answer any THREE questions: Ш 3x2 = 6If $f: R \to R$ and $g: R \to R$ are given by $f(x) = \cos x$ and $g(x) = 3x^2$ find gof(x) and fog(x). 12) Prove that $2\sin^{-1} x = \sin^{-1} \left(2x\sqrt{1-x^2}\right), \frac{-1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$. 13) Find the equation of line joining (3, 1) and (9, 3) using determinants. 14) If $x^2 + xy + y^2 = 100$ find $\frac{dy}{dx}$. 15) Find $\frac{dy}{dx}$ if $y = x^{\sin x}$ when x > 0.

FIRST QUARTER 3-TRAGST AUGUST 2024

IV Answer any THREE questions: 3x3 = 9

- Show that the relation R in the set $A=\{1, 2, 3, 4, 5\}$ given by $R=\{(a, b): |a-b| \text{ is Even}\}$ is equivalence relation.
- 17) Write in the simplest form $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$, $x \neq 0$.
- 18) Express $A = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrix.
- Find the value of k, so that the function, $f(x) = \begin{cases} kx^2 & \text{if } x \le 2\\ 3 & \text{if } x > 2 \end{cases}$ is continuous at x = 2.
- 20) Find $\frac{dy}{dx}$ if $x = a(\theta \sin \theta)$, $y = a(1 + \cos \theta)$ a some mediagon lie to rodinum of T

Answer any THREE questions:

- Let $f: N \rightarrow Y$ be a function defined as f(x) = 4x + 3, where $Y = \{y \in N : y = 4x + 3, \text{ for some } x \in N\}$ show that f is invertible. Find the inverse of f.
- 22) If $A = \begin{bmatrix} 1 \\ -4 \\ 2 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$. Verify that (AB)' = B'A'. The derivative of sin (a x + b) with respect to x is

 Solve by matrix method: (a x x s) a cos (a x + b) a sin (a x + c) (d + x x) a cos (a x x s) (d + x x s) (d + x x s) a cos (a x x s) (d + x s) (d +

$$E = 1x^2x - y + z = 4$$
, $2x + y - 3z = 0$, $x + y + z = 2$. In a small of all rewards

24) If
$$y = (\tan^{-1} x)^2$$
 show that $(1+x^2)^2 \frac{d^2 y}{dx^2} + 2x(1+x^2) \frac{dy}{dx} = 2$.

- 25) Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfy the equation $A^2 4A + I = 0$. Where I is the identity
 - matrix of order 2 and 0 is the zero matrix of order 2 using this equation find A⁻¹.

If $f: R \to R$ and $g: R \to R$ are given by $f(x) = \cos x$, and $g(x) = 3x^2$ find gof(x) and $\log(x)$.

Prove that $2\sin^{-1} x = \sin^{-1} \left(2x\sqrt{1-x^2} \right), \frac{-1}{\sqrt{6}} \le x \le \frac{1}{\sqrt{6}}$.