FIRST QUARTERLY TEST AUGUST 2024 CLASS: II PUC SUBJECT: PHYSICS (33) Max. Marks: 35

Gen	E: 1 Hr. 30 Mins.
1) 2) 3)	All parts are compulsory. For Part A questions, only the first written answer will be considered for evaluation. Answers without relevant diagram/figure/circuit wherever necessary will not carry any marks.
)	Direct answers to the Numerical problems solved without detailed solutions will not carry any marks.
	· PART-A
01=	Pick the correct option among the four given options for all the following questions: $7x1=7$ The charge are a hadron which 6.25×10^{18} electrons are added in
)	The charge on a body to which 6.25×10^{18} electrons are added is
21.00	a) +1 C b) -1 C c) +10 C d) -10 C
)	The S.I unit of electric dipole moment is
	a) C
) .	The potential at any point inside a hollow charged spherical conductor of radius 0.2 m is 1 V. The potential on the surface of the conductor is
	a) 0.5 V to see as an earl of b) 1 V seeling out mover c) 2 V w roll argon of a d) 2.5 V
)	The capacitance of a parallel plate capacitor is increased by
	a) increasing the area of the plates b) increasing the distance between the plates
	c) decreasing the dielectric constant d) None of these
)	5.1 diffe of mobility of free electrons is
	a) ms^{-1} b) Vm^{-1} c) $m^2V^{-1}s^{-1}$ d) ms^{-2}
)	On increasing the temperature of a conductor, its resistance increases because
	a) relaxation time decreases of the electrons increases
1	c) electron density decreases d) None of the above
)	The radius of the circular path described by a charged particle entering a magnetic field normally is
	a) $r = \frac{mvq}{B}$ b) $r = \frac{mq}{Bv}$ c) $r = \frac{mB}{qv}$ d) $r = \frac{mv}{qB}$
	a) $1 - \frac{1}{R}$
	B dv qv qB
I	
Ι	Fill in the blanks by choosing appropriate answers given in the brackets for all the following questions: $3x1=3$
	Fill in the blanks by choosing appropriate answers given in the brackets for all the following questions: $3x1=3$ (straight line, Cm, charge, Nm ² C ⁻¹)
	Fill in the blanks by choosing appropriate answers given in the brackets for all the following questions: (straight line, Cm, charge, Nm ² C ⁻¹) The S.I unit of electric flux is
)	Fill in the blanks by choosing appropriate answers given in the brackets for all the following questions: (straight line, Cm, charge, Nm ² C ⁻¹) The S.I unit of electric flux is The significance of Kirchhoff's junction rule is the law of conservation of
)	Fill in the blanks by choosing appropriate answers given in the brackets for all the following questions: (straight line, Cm, charge, Nm ² C ⁻¹) The S.I unit of electric flux is The significance of Kirchhoff's junction rule is the law of conservation of
)	Fill in the blanks by choosing appropriate answers given in the brackets for all the following questions: (straight line, Cm, charge, Nm ² C ⁻¹) The S.I unit of electric flux is The significance of Kirchhoff's junction rule is the law of conservation of A charged particle enters an electric field in the direction of the field, then the nature of the
)) 0)	Fill in the blanks by choosing appropriate answers given in the brackets for all the following questions: (straight line, Cm, charge, Nm ² C ⁻¹) The S.I unit of electric flux is The significance of Kirchhoff's junction rule is the law of conservation of A charged particle enters an electric field in the direction of the field, then the nature of the path traced by it is
II (3) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Fill in the blanks by choosing appropriate answers given in the brackets for all the following questions: (straight line, Cm, charge, Nm ² C ⁻¹) The S.I unit of electric flux is The significance of Kirchhoff's junction rule is the law of conservation of A charged particle enters an electric field in the direction of the field, then the nature of the path traced by it is PART-B
() () (0) (1) (1)	Fill in the blanks by choosing appropriate answers given in the brackets for all th following questions: (straight line, Cm, charge, Nm ² C ⁻¹) The S.I unit of electric flux is The significance of Kirchhoff's junction rule is the law of conservation of A charged particle enters an electric field in the direction of the field, then the nature of th path traced by it is PART-B Answer any TWO of the following questions: 2x2=4 State and Explain Coulomb's law of Electrostatics.
3) 0) 0)	Fill in the blanks by choosing appropriate answers given in the brackets for all the following questions: (straight line, Cm, charge, Nm ² C ⁻¹) The S.I unit of electric flux is The significance of Kirchhoff's junction rule is the law of conservation of A charged particle enters an electric field in the direction of the field, then the nature of the path traced by it is PART-B Answer any TWO of the following questions: 2x2=4

- 13) Give any two limitations of Ohm's law.
- Mention the expression for Lorentz force and explain the terms.

PART-C

IV Answer any TWO of the following questions:

: anothernizal 2x3=6

- 15) Write any three properties of Electric field lines.
- Obtain the relation between Electric field and Electric potential.
- Derive the expression for drift velocity of free electrons in a conductor when an electric field 17) is applied across it. Sile 13 trouble to be some supplied across it. Sile 13 trouble to be some to
- Obtain the relation between Current density, Electrical conductivity and Electric field. 18)

PART-D

Answer any TWO of the following questions:

- 19) Derive an expression for electric field due to an electric dipole at point on the axial line.
- Define electric potential at a point in an electric field. Derive an expression for electric potential at a point to due to an isolated positive charge.
- 21) Obtain the condition for balance of Wheatstone's network using Kirchhoff's rules.
- 22) Derive the expression for magnetic field at a point on the axis of a circular current loop.

VI Answer any ONE of the following questions:

1x5 = 5

- In a parallel plate capacitor with air between the plates, each plate has an area of 6×10^{-3} m² and 23) the distance between the plates in 3 mm. Calculate the capacitance of the capacitor. If the capacitor is connected to 100 V supply, what is the charge on each plate of the capacitor? Given the absolute permittivity of free space is 8.854×10^{-12} Fm⁻¹.
- Two cells of emf 2V and 4V and internal resistance Ω and Ω respectively are connected in parallel so as to send the current in the same direction through an external resistance of 20Ω . Find the potential difference across 20Ω resistor.